

Welcome to config_resolver’s documentation!

Changelog

	Release 4.2.5.post2

	Release 4.2.5.post1

	Release 4.2.5

	Release 4.2.4

	Release 4.2.3

	Release 4.2.2

	Release 4.2.1

	Release 4.2.0

	Release 4.1.0

	Release 4.0.0

	Release 3.3.0

	Release 3.2.2

	Release 3.2.1

	Release 3.2

	Release 3.1

API

User Manual

[image: _images/config_resolver.svg]
 [https://travis-ci.org/exhuma/config_resolver]
	Fulll Documentation

	https://config-resolver.readthedocs.org/en/latest/

	Repository

	https://github.com/exhuma/config_resolver

	PyPI

	https://pypi.python.org/pypi/config_resolver

Rationale

Many of the larger frameworks (not only web frameworks) offer their own
configuration management. But it looks different everywhere. Both in code and
in usage later on. Additionally, the operating system usually has some default,
predictable place to look for configuration values. On Linux, this is /etc
and the XDG Base Dir Spec [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html].

The code for finding these config files is always the same. But finding config
files can be more interesting than that:

	If config files contain passwords, the application should issue appropriate
warnings if it encounters an insecure file and refuse to load it.

	The expected structure in the config file can be versioned (think: schema).
If an application is upgraded and expects new values to exist in an old
version file, it should notify the user.

	It should be possible to override the configuration per installed instance,
even per execution.

config_resolver tackles all these challenges in a simple-to-use drop-in
module. The module uses no additional external modules (no additional
dependencies, pure Python) so it can be used in any application without adding
unnecessary bloat.

One last thing that config_resolver provides, is a better handling of
default values than instances of SafeConfigParser of the standard library.
The stdlib config parser can only specify defaults for options without
associating them to a section! This means that you cannot have two options with
the same name in multiple sections with different default values.
config_resolver handles default values at the time you call .get(),
which makes it independent of the section.

Description / Usage

The module provides two main classes:

	Config: This is the default class.

	SecuredConfig: This is a subclass of
Config which refuses to load files which a
readable by other people than the owner.

The simple usage for both is identical. The only difference is the above
mentioned decision to load files or not:

from config_resolver imoprt Config
cfg = Config('acmecorp', 'bird_feeder')

This will look for config files in (in that order):

	/etc/acmecorp/bird_feeder/app.ini

	/etc/xdg/acmecorp/bird_feeder/app.ini

	~/.acmecorp/bird_feeder/app.ini – This will be deprecated (no longer
loaded) in config_resolver 5.0

	~/.config/acmecorp/bird_feeder/app.ini

	./.acmecorp/bird_feeder/app.ini

If all files exist, one which is loaded later, will override the values of an
earlier file. No values will be removed, this means you can put system-wide
defaults in /etc and specialise/override from there.

The Freedesktop XDG standard

freedesktop.org [http://www.freedesktop.org] standardises the location of configuration files in the XDG
specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html] Since version 4.1.0, config_resolver reads these paths as
well, and honors the defined environment variables. To ensure backwards
compatibility, those paths have only been added to the resolution order. They
have a higher precedence than the old locations though. So the following
applies:

	XDG item

	overrides

	/etc/xdg/<group>/<app>

	/etc/<group>/<app>

	~/.config/<group>/</app>

	~/.<group>/<app>

	$XDG_DATA_HOME

	$GROUP_APP_PATH

	$XDG_CONFIG_DIRS

	$GROUP_APP_PATH

Tip

If a config file is found at ~/.<group>/<app>, a log message with
a warning is issued since config_resolver 4.1.0 encouraging the
end-user to move the config file to ~/.config/<group>/<app>.

Files are parsed using the default Python configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser]
(i.e. ini files).

Advanced Usage

Versioning

It is pretty much always useful to keep track of the expected “schema” of a
config file. If in a later version of your application, you decide to change a
configuration value’s name, remove a variable, or require a new one the
end-user needs to be notified.

For this use-case, you can create versioned config_resolver.Config
instances in your application:

cfg = Config('group', 'app', version='2.1')

Config file example:

[meta]
version=2.1

[database]
dsn=foobar

If you don’t specify a version number in the construcor versioning will trigger
automatically on the first file encountered which has a version number. The
reason this triggers is to prevent accidentally loading files which
incompatible version.

Only “major” and “minor” numbers are supported. If the application encounters a
file with a different “major” value, it will emit a log message with severity
ERROR and the file will be skipped. Differences in minor numbers are only
logged with a “warning” level but the file will be loaded.

Rule of thumb: If your application accepts a new config value, but can function
just fine with previous and default values, increment the minor number. If on
the other hand, something has changed, and the user needs to change the config
file, increment the major number.

Requiring files (bail out if no config is found)

Since version 3.3.0, you have a bit more control about how files are loaded.
The config_resolver.Config class takes a new argument:
require_load. If this is set to True, an OSError [https://docs.python.org/3.2/library/exceptions.html#OSError] is raised
if no config file was loaded. Alternatively, and, purely a matter of taste, you
can leave this on it’s default False value and inspect the loaded_files
attribute on the config_resolver.Config instance. If it’s empty,
nothing has been loaded.

Overriding internal defaults

Both the search path and the basename of the file (app.ini) can be
overridden by the application developer via the API and by the end-user via
environment variables.

By the application developer

Apart from the “group name” and “application name”, the
config_resolver.Config class accepts search_path and
filename as arguments. search_path controls to what folders are
searched for config files, filename controls the basename of the config
file. filename is especially useful if you want to separate different
concepts into different files:

app_cfg = Config('acmecorp', 'bird_feeder')
db_cfg = Config('acmecorp', 'bird_feeder', filename='db.ini')

By the end-user

The end-user has access to two environment variables:

	<GROUP_NAME>_<APP_NAME>_PATH overrides the default search path.

	XDG_CONFIG_HOME overrides the path considered as “home” locations for
config files (default=``~/.config``)

	XDG_CONFIG_DIRS overrides additional path elements as recommended by
the freedesktop.org XDG basedir spec [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]. Paths are separated by : and are
sorted with descending precedence (leftmost is the most important one).

	<GROUP_NAME>_<APP_NAME>_FILENAME overrides the default basename of the
config file (default=``app.ini``).

Logging

All operations are logged using the default logging [https://docs.python.org/3.2/library/logging.html#module-logging] package with a
logger with the name config_resolver. All operational logs (opening/reading
file) are logged with the INFO level. The log messages include the absolute
names of the loaded files. If a file is not loadable, a WARNING message is
emitted. It also contains a couple of DEBUG messages. If you want to see
those messages on-screen you could do the following:

import logging
from config_resolver import Config
logging.basicConfig(level=logging.DEBUG)
conf = Config('mycompany', 'myapplication')

If you want to use the INFO level in your application, but silence only the
config_resolver logs, add the following to your code:

logging.getLogger('config_resolver').setLevel(logging.WARNING)

As of version 4.2.0, all log messages are prefixed with the group and
application name. This helps identifying log messages if multiple packages in
your application use config_resolver. The prefix filter can be accessed via
the instance member _prefix_filter if you want to change or remove it:

from config_resolver import Config
conf = Config('mycompany', 'myapplication')
print conf._prefix_filter

More detailed information about logging is out of the scope of this document.
Consider reading the logging tutorial [http://docs.python.org/3.2/howto/logging.html#logging-basic-tutorial] of the official Python docs.

Environment Variables

The resolver can also be manipulated using environment variables to allow
different values for different running instances. The variable names are all
upper-case and are prefixed with both group- and application-name.

	<group_name>_<app_name>_PATH

	The search path for config files. You can specify multiple paths by
separating it by the system’s path separator default (: on Linux).

If the path is prefixed with +, then the path elements are appended
to the default search path.

	<group_name>_<app_name>_FILENAME

	The file name of the config file. Note that this should not be given with
leading path elements. It should simply be a file basename (f.ex.:
my_config.ini)

	XDG_CONFIG_HOME and XDG_CONFIG_DIRS

	See the XDG specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]

Difference to ConfigParser

There is one major difference to the default Python
ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser]: the
get() method accepts a “default” parameter. If
specified, that value is returned in case
ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] does not return a value. Remember that
the ConfigParser instance supports defaults as well if specified in the
constructor.

Using the default parameter on get(), you
can now have two options with the same name in two sections with different
values. Imagine the following:

[database1]
dsn=sqlite:///tmp/db.sqlite3

[database2]
dsn=sqlite:///tmp/db2.sqlite3

In the core ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] you could not specify two
different default values! The default parameter makes this possible.

Note

AGAIN: The core ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] default mechanism
still takes precedence!

Debugging

Creating an instance of Config will not raise an
error (except if explicitly asked to do so). Instead it will always return a
valid, (but possibly empty) instance. So errors can be hard to see sometimes.

The idea behind this, is to encourage you to have sensible default values, so
that the application can run, even without configuration. For
“development-time” exceptions, consider calling
get() without a default value.

Your first stop should be to configure logging and look at the emitted
messages.

In order to determine whether any config file was loaded, you can look into the
loaded_files instance variable. It contains a list of all the loaded files,
in the order of loading. If that list is empty, no config has been found. Also
remember that the order is important. Later elements will override values from
earlier elements.

Additionally, another instance variable named active_path represents the
search path after processing of environment variables and runtime parameters.
This may also be useful to display informtation to the end-user.

Examples

A simple config instance (with logging):

import logging
from config_resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird_feeder")
print cfg.get('section', 'var')

An instance which will not load unsecured files:

import logging
from config_resolver import SecuredConfig

logging.basicConfig(level=logging.DEBUG)
cfg = SecuredConfig("acmecorp", "bird_feeder")
print cfg.get('section', 'var')

Loading a versioned config file:

import logging
from config_resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird_feeder", version="1.0")
print cfg.get('section', 'var')

Default values:

import logging
from config_resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird_feeder", version="1.0")

This will not raise an error (but emit a DEBUG log entry).
print cfg.get('section', 'example_non_existing_option_name', default=10)

this may raise a "NoOptionError"
print cfg.get('section', 'example_non_existing_option_name')

this may raise a "NoSectionError"
print cfg.get('example_non_existing_section_name', 'varname')

Indices and tables

	Index

	Module Index

	Search Page

Release 4.2.5.post2

Fixes

	filename can now be passed as direct argument to get_config

	Don’t warn if the config is retrieved correctly

Release 4.2.5.post1

Fixes

	Improved warning detail in deprecation messages.

Release 4.2.5

Fixes

	Change from a module-only distrbution to a package (for PEP-561)

	Make package PEP-561 compliant

	Add transition function config_resolver.get_config for a smoother upgrade
to v5.0 in the future.

	Add deprecation warnings with details on how to change the code for a smooth
transition to v5.0

Release 4.2.4

Fixes

	Improve code quality.

	Improve log message for invalid config version numbers.

Release 4.2.3

Fixes

	Unit tests fixed

	Added missing LICENSE file

	Log messages will now show the complete version string

	Auto-detect version number if none is specifiec in the [meta] section.

	Fix travis CI pipeline

Release 4.2.2

Fixes

	Python 2/3 class-inheritance fixed.

Release 4.2.1

Fixes

	Log message prefixes no longer added multiple times

Release 4.2.0

Features added

	Application & Group name is added to log records

Fixes

	Python 2/3 Unicode fix in log records

Release 4.1.0

Features added

	XDG Basedir support

config_resolver will now search in the folders/names defined in the `XDG
specification`_.

Release 4.0.0

Features added

	Config versioning support.

The config files can now have a section meta with the key version.
The version is specified in dotted-notation with a major and minor number
(f.ex.: version=2.1). Configuration instances take an optional
version argument as well. If specified, config_resolver expects the
meta.version to be there. It will raise a
config_resolver.NoVersionError otherwise. Increments in the major number
signify an incompatible change. If the application expectes a different major
number than stored in the config file, it will raise a
config_resolver.IncompatibleVersion exception. Differences in minor
numbers are only logged.

Improvments

	The mandatory argument has been dropped! It is now implicitly assumed
it the .get method does not specify a default value. Even though
“explicit is better than implicit”, this better reflects the behaviour of the
core ConfigParser and is more intuitive.

	Legacy support of old environment variable names has been dropped!

	Python 3 support.

	When searching for a file on the current working directory, look for
./.group/app/app.ini instead of simply ./app.ini. This solves a
conflict when two modules use config_resolver in the same application.

	Better logging.

Release 3.3.0

Features added

	New (optional) argument: require_load. If set to True creating a
config instance will raise an error if no appropriate config file is found.

	New class: SecuredConfig: This class will refuse to load config files
which are readable by other users than the owner.

Improvments

	Documentation updated/extended.

	Code cleanup.

Release 3.2.2

Improvments

	Unit tests added

Release 3.2.1

Fixes/Improvments

	The “group” name has been prefixed to the names of the environment variables.
So, instead of APP_PATH, you can now use GROUP_APP_PATH instead. Not using
the GROUP prefix will still work but emit a DeprecationWarning.

Release 3.2

Features added

	The call to get can now take an optional default value. More details can
be found in the docstring.

Release 3.1

Features added

	It is now possible to extend the search path by prefixing the
<APP_NAME>_PATH variable value with a +

	Changelog added

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 config_resolver	

 	
 	
 config_resolver.core	

 	
 	
 config_resolver.exc	

 	
 	
 config_resolver.util	

Index

 B
 | C
 | F
 | G
 | I
 | L
 | N
 | P
 | S

B

 	
 	build_call_str() (in module config_resolver.core)

C

 	
 	check_file() (config_resolver.core.Config method)

 	(config_resolver.core.SecuredConfig method)

 	Config (class in config_resolver.core)

 	config_resolver (module)

 	
 	config_resolver.core (module)

 	config_resolver.exc (module)

 	config_resolver.util (module)

 	ConfigResolverBase (class in config_resolver.core)

F

 	
 	filter() (config_resolver.util.PrefixFilter method)

G

 	
 	get() (config_resolver.core.Config method)

 	get_config() (in module config_resolver.core)

 	get_new_call() (in module config_resolver.core)

 	
 	get_warn_location() (in module config_resolver.core)

 	get_xdg_dirs() (config_resolver.core.Config method)

 	get_xdg_home() (config_resolver.core.Config method)

I

 	
 	IncompatibleVersion

L

 	
 	load() (config_resolver.core.Config method)

N

 	
 	NoVersionError

P

 	
 	PrefixFilter (class in config_resolver.util)

S

 	
 	SecuredConfig (class in config_resolver.core)

config_resolver package

Submodules

config_resolver.core module

config_resolver provides a Config class, which looks up common locations
for config files and loads them if found. It provides a framework independed
way of handling configuration files. Additional care has been taken to allow
the end-user of the application to override this lookup process.

	
class config_resolver.core.Config(group_name, app_name, search_path=None, filename='app.ini', require_load=False, version=None, **kwargs)

	Bases: config_resolver.core.ConfigResolverBase

	Parameters

	
	group_name – an application group (f. ex.: your company name)

	app_name – an application identifier (f.ex.: the application
module name)

	search_path – if specified, set the config search path to the
given value. The path can use OS specific separators (f.ex.: :
on posix, ; on windows) to specify multiple folders. These
folders will be searched in the specified order. The config files
will be loaded incrementally. This means that the each subsequent
config file will extend/override existing values. This means that
the last file will take precedence.

	filename – if specified, this can be used to override the
configuration filename.

	require_load – If this is set to True, creation of the config
instance will raise an OSError [https://docs.python.org/3.2/library/exceptions.html#OSError] if not a single file could be
loaded.

	version – If specified (f.ex.: version='2.0'), this will create a
versioned config instance. A versioned instance will only load config
files which have the same major version. On mismatch an error is logged
and the file is skipped. If the minor version differs the file will be
loaded, but issue a warning log. Version numbers are parsed using
distutils.version.StrictVersion

	
check_file(filename)

	Check if filename can be read. Will return boolean which is True if
the file can be read, False otherwise.

	
get(section, option, **kwargs)

	Overrides configparser.ConfigParser.get() [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser.get].

In addition to section and option, this call takes an optional
default value. This behaviour works in addition to the
configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] default mechanism. Note that
a default value from ConfigParser takes precedence.

The reason this additional functionality is added, is because the
defaults of configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] are not dependent
on sections. If you specify a default for the option test, then
this value will be returned for both section1.test and for
section2.test. Using the default on the get call gives you more
fine-grained control over this.

Also note, that if a default value was used, it will be logged with
level logging.DEBUG.

	Parameters

	
	section – The config file section.

	option – The option name.

	kwargs – These keyword args are passed through to
configparser.ConfigParser.get() [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser.get].

	
get_xdg_dirs()

	Returns a list of paths specified by the XDG_CONFIG_DIRS environment
variable or the appropriate default.

The list is sorted by precedence, with the most important item coming
last (required by the existing config_resolver logic).

	
get_xdg_home()

	Returns the value specified in the XDG_CONFIG_HOME environment variable
or the appropriate default.

	
load(reload=False, require_load=False)

	Searches for an appropriate config file. If found, loads the file into
the current instance. This method can also be used to reload a
configuration. Note that you may want to set reload to True to
clear the configuration before loading in that case. Without doing
that, values will remain available even if they have been removed from
the config files.

	Parameters

	
	reload – if set to True, the existing values are cleared
before reloading.

	require_load – If set to True this will raise a
IOError [https://docs.python.org/3.2/library/exceptions.html#IOError] if no config file has been found
to load.

	
class config_resolver.core.ConfigResolverBase(defaults=None, dict_type=<class 'collections.OrderedDict'>, allow_no_value=False, *, delimiters=('=', ':'), comment_prefixes=('#', ';'), inline_comment_prefixes=None, strict=True, empty_lines_in_values=True, default_section='DEFAULT', interpolation=<object object>, converters=<object object>)

	Bases: configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser]

A default “base” object simplifying Python 2 and Python 3
compatibility.

	
class config_resolver.core.SecuredConfig(group_name, app_name, search_path=None, filename='app.ini', require_load=False, version=None, **kwargs)

	Bases: config_resolver.core.Config

A subclass of Config which will refuse to load config files
which are read able by other users than the owner.

	
check_file(filename)

	Overrides Config.check_file()

	
config_resolver.core.build_call_str(prefix, args, kwargs)

	Build a callable Python string for a function call. The output will be
combined similar to this template:

<prefix>(<args>, <kwargs>)

Example:

>>> build_call_str('foo', (1, 2), {'a': '10'})
"foo(1, 2, a='10')"

	
config_resolver.core.get_config(app_name, group_name='', filename='', lookup_options=None, handler=None)

	

	
config_resolver.core.get_new_call(group_name, app_name, search_path, filename, require_load, version)

	Build a call to use the new get_config function from args passed to
Config.__init__.

	
config_resolver.core.get_warn_location()

	Gets the location where the function was called or “<unknown>” if it was
unable to get the location.

If this returns an empty string, we assume the warning can be ignored.

config_resolver.exc module

	
exception config_resolver.exc.IncompatibleVersion

	Bases: Exception [https://docs.python.org/3.2/library/exceptions.html#Exception]

This exception is raised if a config file is loaded which has a different
major version number than expected by the application.

	
exception config_resolver.exc.NoVersionError

	Bases: Exception [https://docs.python.org/3.2/library/exceptions.html#Exception]

This exception is raised if the application expects a version number to be
present in the config file but does not find one.

config_resolver.util module

	
class config_resolver.util.PrefixFilter(prefix, separator=' ')

	Bases: logging.Filter [https://docs.python.org/3.2/library/logging.html#logging.Filter]

A logging filter which prefixes each message with a given text.

	Parameters

	
	prefix – The log prefix.

	separator – A string to put between the prefix and the original log
message.

	
filter(record)

	Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.

Module contents

config_resolver

	config_resolver package
	Submodules

	config_resolver.core module

	config_resolver.exc module

	config_resolver.util module

	Module contents

 nav.xhtml

 Table of Contents

 		
 Welcome to config_resolver’s documentation!

 		
 Release 4.2.5.post2

 		
 Fixes

 		
 Release 4.2.5.post1

 		
 Fixes

 		
 Release 4.2.5

 		
 Fixes

 		
 Release 4.2.4

 		
 Fixes

 		
 Release 4.2.3

 		
 Fixes

 		
 Release 4.2.2

 		
 Fixes

 		
 Release 4.2.1

 		
 Fixes

 		
 Release 4.2.0

 		
 Features added

 		
 Fixes

 		
 Release 4.1.0

 		
 Features added

 		
 Release 4.0.0

 		
 Features added

 		
 Improvments

 		
 Release 3.3.0

 		
 Features added

 		
 Improvments

 		
 Release 3.2.2

 		
 Improvments

 		
 Release 3.2.1

 		
 Fixes/Improvments

 		
 Release 3.2

 		
 Features added

 		
 Release 3.1

 		
 Features added

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

