config,esolver
Release 4.2.2

Oct 18, 2018

Contents

Changelog
API

User Manual
Examples

Indices and tables

15

17

CHAPTER 1

Changelog

1.1 Fixed

* Fixed return-value of get_config. It now properly returns the same return value as config-resolver 5. New
deprecation warnings have been added as well.

Warning: This will BREAK your code as get_config now returns a tuple, with the config instance
being the first element! This should never have entered like this in the 4.x branch. Sorry about that.

* Fixed missing NoSectionError and NoOptionError imports (regression from 4.2.5 via commit
54168cd)

1.1.1 Release 4.3.0

1.2 Added

* The new “transition” function get_config now also honors the secure flagin Lookup_options.

1.2.1 Release 4.2.5.post2

1.3 Fixes

* filename can now be passed as direct argument to get_config

* Don’t warn if the config is retrieved correctly

config,.esolver, Release4.2.2

1.3.1 Release 4.2.5.post1

1.4 Fixes

* Improved warning detail in deprecation messages.

1.4.1 Release 4.2.5

1.5 Fixes

* Change from a module-only distrbution to a package (for PEP-561)
* Make package PEP-561 compliant
¢ Add transition function config_resolver.get_config for a smoother upgrade to v5.0 in the future.

* Add deprecation warnings with details on how to change the code for a smooth transition to v5.0

1.5.1 Release 4.2.4

1.6 Fixes

* Improve code quality.

* Improve log message for invalid config version numbers.

1.6.1 Release 4.2.3

1.7 Fixes

* Unit tests fixed
Added missing LICENSE file

* Log messages will now show the complete version string
¢ Auto-detect version number if none is specifiec in the [meta] section.

* Fix travis CI pipeline

1.7.1 Release 4.2.2

1.8 Fixes

 Python 2/3 class-inheritance fixed.

2 Chapter 1. Changelog

config,.esolver, Release4.2.2

1.8.1 Release 4.2.1

1.9 Fixes

* Log message prefixes no longer added multiple times

1.9.1 Release 4.2.0

1.10 Features added

* Application & Group name is added to log records

1.11 Fixes

¢ Python 2/3 Unicode fix in log records

1.11.1 Release 4.1.0

1.12 Features added

* XDG Basedir support

config_resolver will now search in the folders/names defined in the ‘XDG specification®_.

1.12.1 Release 4.0.0

1.13 Features added

» Config versioning support.

The config files can now have a section meta with the key version. The version is specified in dotted-
notation with a major and minor number (f.ex.: version=2.1). Configuration instances take an optional
version argument as well. If specified, config_resolver expects the meta.version to be there. It will raise
a config_resolver.NoVersionError otherwise. Increments in the major number signify an incom-
patible change. If the application expectes a different major number than stored in the config file, it will raise a
config_resolver.IncompatibleVersion exception. Differences in minor numbers are only logged.

1.14 Improvments

* The mandatory argument has been dropped! It is now implicitly assumed it the .get method does not
specify a default value. Even though “explicit is better than implicit”, this better reflects the behaviour of the
core ConfigParser and is more intuitive.

* Legacy support of old environment variable names has been dropped!

* Python 3 support.

1.9. Fixes 3

config,.esolver, Release4.2.2

* When searching for a file on the current working directory, look for ./ .group/app/app.ini instead of
simply . /app.ini. This solves a conflict when two modules use config_resolver in the same application.

* Better logging.

1.14.1 Release 3.3.0

1.15 Features added

* New (optional) argument: require_load. If set to True creating a config instance will raise an error if no
appropriate config file is found.

* New class: SecuredConfig: This class will refuse to load config files which are readable by other users than
the owner.

1.16 Improvments

* Documentation updated/extended.

* Code cleanup.

1.16.1 Release 3.2.2

1.17 Improvments

e Unit tests added

1.17.1 Release 3.2.1
1.18 Fixes/Improvments

* The “group” name has been prefixed to the names of the environment variables. So, instead of APP_PATH, you
can now use GROUP_APP_PATH instead. Not using the GROUP prefix will still work but emit a Deprecation-
Warning.

1.18.1 Release 3.2

1.19 Features added

* The call to get can now take an optional default value. More details can be found in the docstring.

4 Chapter 1. Changelog

config,.esolver, Release4.2.2

1.19.1 Release 3.1

1.20 Features added

* Itis now possible to extend the search path by prefixing the <APP_NAME>_PATH variable value with a +
* Changelog added

1.20. Features added 5

config,.esolver, Release4.2.2

6 Chapter 1. Changelog

CHAPTER 2

API

config,.esolver, Release4.2.2

8 Chapter 2. API

CHAPTER 3

User Manual

Fulll Documentation https://config-resolver.readthedocs.org/en/latest/
Repository https://github.com/exhuma/config_resolver

PyPI https://pypi.python.org/pypi/config_resolver

3.1 Rationale

Many of the larger frameworks (not only web frameworks) offer their own configuration management. But it looks
different everywhere. Both in code and in usage later on. Additionally, the operating system usually has some default,
predictable place to look for configuration values. On Linux, this is /et c and the XDG Base Dir Spec.

The code for finding these config files is always the same. But finding config files can be more interesting than that:

« If config files contain passwords, the application should issue appropriate warnings if it encounters an insecure
file and refuse to load it.

* The expected structure in the config file can be versioned (think: schema). If an application is upgraded and
expects new values to exist in an old version file, it should notify the user.

* It should be possible to override the configuration per installed instance, even per execution.

config_resolver tackles all these challenges in a simple-to-use drop-in module. The module uses no additional
external modules (no additional dependencies, pure Python) so it can be used in any application without adding
unnecessary bloat.

One last thing that config_resolver provides, is a better handling of default values than instances of
SafeConfigParser of the standard library. The stdlib config parser can only specify defaults for options without
associating them to a section! This means that you cannot have two options with the same name in multiple sections
with different default values. config_resolver handles default values at the time you call . get (), which makes
it independent of the section.

https://travis-ci.org/exhuma/config_resolver
https://config-resolver.readthedocs.org/en/latest/
https://github.com/exhuma/config_resolver
https://pypi.python.org/pypi/config_resolver
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html

config,.esolver, Release4.2.2

3.2 Description / Usage

The module provides two main classes:
e Config: This is the default class.

* SecuredConfig: This is a subclass of Config which refuses to load files which a readable by other people
than the owner.

The simple usage for both is identical. The only difference is the above mentioned decision to load files or not:

from config resolver imoprt Config
cfg = Config('acmecorp', 'bird feeder')

This will look for config files in (in that order):
* /etc/acmecorp/bird_feeder/app.ini
* /etc/xdg/acmecorp/bird_feeder/app.ini

e ~/.acmecorp/bird_feeder/app.ini - This will be deprecated (no longer loaded) in
config_resolver 5.0

e ~/.config/acmecorp/bird_feeder/app.ini
e ./.acmecorp/bird_feeder/app.ini

If all files exist, one which is loaded later, will override the values of an earlier file. No values will be removed, this
means you can put system-wide defaults in /et c and specialise/override from there.

3.2.1 The Freedesktop XDG standard

freedesktop.org standardises the location of configuration files in the XDG specification Since version 4.1.0,
config_resolver reads these paths as well, and honors the defined environment variables. To ensure backwards
compatibility, those paths have only been added to the resolution order. They have a higher precedence than the old
locations though. So the following applies:

XDG item overrides
/etc/xdg/<group>/<app> /etc/<group>/<app>
~/.config/<group>/</app> | ~/.<group>/<app>
SXDG_DATA_HOME SGROUP_APP_PATH
$SXDG_CONFIG_DIRS SGROUP_APP_PATH

Tip: If a config file is found at ~/ . <group>/<app>, a log message with a warning is issued since config_resolver
4.1.0 encouraging the end-user to move the config file to ~/.config/<group>/<app>.

Files are parsed using the default Python configparser.ConfigParser (i.e. ini files).

10 Chapter 3. User Manual

http://www.freedesktop.org
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser

config,.esolver, Release4.2.2

3.3 Advanced Usage

3.3.1 Versioning

It is pretty much always useful to keep track of the expected “schema” of a config file. If in a later version of your
application, you decide to change a configuration value’s name, remove a variable, or require a new one the end-user
needs to be notified.

For this use-case, you can create versioned config_resolver.Config instances in your application:

cfg = Config('group', 'app', version='2.1")

Config file example:

[metal
version=2.1

[database]
dsn=foobar

If you don’t specify a version number in the construcor versioning will trigger automatically on the first file encoun-
tered which has a version number. The reason this triggers is to prevent accidentally loading files which incompatible
version.

Only “major” and “minor” numbers are supported. If the application encounters a file with a different “major” value,
it will emit a log message with severity ERROR and the file will be skipped. Differences in minor numbers are only
logged with a “warning” level but the file will be loaded.

Rule of thumb: If your application accepts a new config value, but can function just fine with previous and default
values, increment the minor number. If on the other hand, something has changed, and the user needs to change the
config file, increment the major number.

3.3.2 Requiring files (bail out if no config is found)

Since version 3.3.0, you have a bit more control about how files are loaded. The config_resolver.Config
class takes a new argument: require_load. If this is set to True, an OSError is raised if no config file was
loaded. Alternatively, and, purely a matter of taste, you can leave this on it’s default False value and inspect the
loaded_files attribute on the config_resolver.Config instance. If it’s empty, nothing has been loaded.

3.4 Overriding internal defaults

Both the search path and the basename of the file (app . ini) can be overridden by the application developer via the
API and by the end-user via environment variables.

3.4.1 By the application developer

Apart from the “group name” and “application name”, the config_resolver.Config class accepts
search_path and filename as arguments. search_path controls to what folders are searched for config
files, filename controls the basename of the config file. £ilename is especially useful if you want to separate
different concepts into different files:

3.3. Advanced Usage 11

https://docs.python.org/3.2/library/exceptions.html#OSError

config,.esolver, Release4.2.2

app_cfg = Config('acmecorp', 'bird feeder')
db_cfg = Config('acmecorp', 'bird_feeder', filename='db.ini'")

3.4.2 By the end-user

The end-user has access to two environment variables:
* <GROUP_NAME>_<APP_NAME>_PATH overrides the default search path.
* XDG_CONF IG_HOME overrides the path considered as “home” locations for config files (default=*‘~/.config*‘)

* XDG_CONFIG_DIRS overrides additional path elements as recommended by the freedesktop.org XDG basedir
spec. Paths are separated by : and are sorted with descending precedence (leftmost is the most important one).

* <GROUP_NAME>_<APP_NAME>_FILENAME overrides the default basename of the config file (de-
fault="‘app.ini‘®).

3.5 Logging

All operations are logged using the default 1ogging package with a logger with the name config_resolver.
All operational logs (opening/reading file) are logged with the INFO level. The log messages include the absolute
names of the loaded files. If a file is not loadable, a WARNING message is emitted. It also contains a couple of DEBUG
messages. If you want to see those messages on-screen you could do the following:

import logging

from config resolver import Config
logging.basicConfig(level=logging.DEBUG)
conf = Config('mycompany', 'myapplication')

If you want to use the INFO level in your application, but silence only the config_resolver logs, add the following to
your code:

logging.getLogger ('config resolver') .setLevel (logging.WARNING)

As of version 4.2.0, all log messages are prefixed with the group and application name. This helps identifying log
messages if multiple packages in your application use config_resolver. The prefix filter can be accessed via the
instance member _prefix_filter if you want to change or remove it:

from config resolver import Config
conf = Config('mycompany', 'myapplication')
print conf._prefix_filter

More detailed information about logging is out of the scope of this document. Consider reading the logging tutorial of
the official Python docs.

3.6 Environment Variables

The resolver can also be manipulated using environment variables to allow different values for different running
instances. The variable names are all upper-case and are prefixed with both group- and application-name.

<group_name>_<app_name>_PATH The search path for config files. You can specify multiple paths by sepa-
rating it by the system’s path separator default (: on Linux).

12 Chapter 3. User Manual

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3.2/library/logging.html#module-logging
http://docs.python.org/3.2/howto/logging.html#logging-basic-tutorial

config,.esolver, Release4.2.2

If the path is prefixed with +, then the path elements are appended to the default search path.

<group_name>_<app_name>_FILENAME The file name of the config file. Note that this should not be given
with leading path elements. It should simply be a file basename (f.ex.: my_config.ini)

XDG_CONFIG_HOME and XDG_CONFIG_DIRS See the XDG specification

3.7 Difference to ConfigParser

There is one major difference to the default Python ConfigParser: the get () method accepts a “default” pa-
rameter. If specified, that value is returned in case ConfigParser does not return a value. Remember that the
ConfigParser instance supports defaults as well if specified in the constructor.

Using the default parameter on get (), you can now have two options with the same name in two sections with
different values. Imagine the following:

[databasel]
dsn=sqglite:///tmp/db.sqglite3

[database?2]
dsn=sqglite:///tmp/db2.sglite3

In the core ConfigParser you could not specify two different default values! The default parameter makes this
possible.

Note: AGAIN: The core ConfigParser default mechanism still takes precedence!

3.7.1 Debugging
Creating an instance of Config will not raise an error (except if explicitly asked to do so). Instead it will always
return a valid, (but possibly empty) instance. So errors can be hard to see sometimes.

The idea behind this, is to encourage you to have sensible default values, so that the application can run, even without
configuration. For “development-time” exceptions, consider calling get () without a default value.

Your first stop should be to configure logging and look at the emitted messages.

In order to determine whether any config file was loaded, you can look into the 1oaded_files instance variable.
It contains a list of all the loaded files, in the order of loading. If that list is empty, no config has been found. Also
remember that the order is important. Later elements will override values from earlier elements.

Additionally, another instance variable named active_path represents the search path after processing of environ-
ment variables and runtime parameters. This may also be useful to display informtation to the end-user.

3.7. Difference to ConfigParser 13

http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html
https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser

config,.esolver, Release4.2.2

14 Chapter 3. User Manual

CHAPTER 4

Examples

A simple config instance (with logging):

import logging
from config resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird feeder")
print cfg.get ('section', 'var')

An instance which will not load unsecured files:

import logging
from config resolver import SecuredConfig

logging.basicConfig(level=logging.DEBUG)
cfg = SecuredConfig("acmecorp", "bird_feeder™)
print cfg.get ('section', 'var')

Loading a versioned config file:

import logging
from config resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird feeder", version="1.0")
print cfg.get ('section', 'var')

Default values:

import logging
from config resolver import Config

logging.basicConfig(level=logging.DEBUG)
cfg = Config("acmecorp", "bird_ feeder", version="1.0")

(continues on next page)

15

config,.esolver, Release4.2.2

(continued from previous page)

This will not raise an error (but emit a DEBUG log entry).
print cfg.get('section', 'example_non_existing_option_name', default=10)

this may raise a "NoOptionError"
print cfg.get ('section', 'example_non_existing_option_name')

this may raise a "NoSectionError"
print cfg.get ('example_non_existing_section_name', 'varname')

16 Chapter 4. Examples

CHAPTER B

Indices and tables

* genindex
* modindex

e search

17

	Changelog
	API
	User Manual
	Examples
	Indices and tables

