

config_resolver

[image: _images/config_resolver.svg]
 [https://travis-ci.org/exhuma/config_resolver]
	Full Documentation

	https://config-resolver.readthedocs.org/en/latest/

	Repository

	https://github.com/exhuma/config_resolver

	PyPI

	https://pypi.python.org/pypi/config_resolver

config_resolver provides a simple, yet flexible way to provide
configuration to your applications. It follows the XDG Base Dir Spec [https://standards.freedesktop.org/basedir-spec/0.8/] (This instance is
based on 0.8 of this spec) for config file locations, and adds additional ways
to override config locations. The aims of this package are:

	Provide a simple API

	Follow well-known standards for config-file locations

	Be as close to pure-Python as possible

	Be framework agnostic

	Allow custom configutaion types (.ini and .json support is shipped by
default)

	Allow to provide system-wide defaults but allow overriding of values for more
specific environments. These are (in increasing order of specificity):

	System-wide configuration (potentially requiring root-access to modify)

	User-level configuration (for all instances running as that user)

	Current Working Directory configuration (for a running instance)

	Per-Instance configuration

Table of Contents

	Usage

	Changelog

	Custom Handlers

	The Meta Object

	API docs

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Usage

Basics

The module provides one function to retrieve a config instance:

	get_config()

and one function to create a config from a text-string:

	from_string()

A simple usage looks like this:

from config_resolver imoprt get_config
result = get_config('bird_feeder', 'acmecorp')
cfg = result.config # The config instance (its type depends on the handler)
meta = result.meta # Metadata for the loading-process

This will look for config files in (in that order):

	/etc/acmecorp/bird_feeder/app.ini

	/etc/xdg/acmecorp/bird_feeder/app.ini

	~/.config/acmecorp/bird_feeder/app.ini

	./.acmecorp/bird_feeder/app.ini

If all files exist, one which is loaded later, will override the values of an
earlier file. No values will be removed, this means you can put system-wide
defaults in /etc and specialise/override from there.

Note

The above is true for the file handlers included with
config_resolver. Since version 5.0 it is possible to provide
custom file-handlers, which may behave differently. If using a custom
file-handler make sure to understand how it behaves! See
Custom Handlers.

The Freedesktop XDG standard

freedesktop.org [http://www.freedesktop.org] standardises the location of configuration files in the XDG
specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html] Since version 4.1.0, config_resolver reads these paths as
well, and honors the defined environment variables. To ensure backwards
compatibility, those paths have only been added to the resolution order. They
have a higher precedence than the old locations though. So the following
applies:

	XDG item

	overrides

	/etc/xdg/<group>/<app>

	/etc/<group>/<app>

	~/.config/<group>/</app>

	~/.<group>/<app>

	$XDG_DATA_HOME

	$GROUP_APP_PATH

	$XDG_CONFIG_DIRS

	$GROUP_APP_PATH

By default, files are parsed using the default Python
configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] (i.e. ini files). Custom file
“handlers” may read other formats. See Custom Handlers.

Advanced Usage

The way config_resolver finds files can be controlled by an optional
lookup_options argument to get_config().
This is a dictionary controlling how the files are searched and which files are
valid. The default options are:

default_options = {
 'search_path': '', # <- empty string here triggers the default search path
 'filename': 'app.ini', # <- this depends on the file-handler
 'require_load': False,
 'version': None,
 'secure': False,
}

All values in the dictionary are optional. Not all values have to be supplied.
Missing values will use the default value shown above.

Versioning

It is pretty much always useful to keep track of the expected “schema” of a
config file. If in a later version of your application, you decide to change a
configuration value’s name, remove a variable, or require a new one the
end-user needs to be notified.

For this use-case, you can use the lookup option version to allow only
files of the proper version to be loaded. If the version differs in a detected
file, a log message will be emitted:

result = get_config('group', 'app', {'version': '2.1'})

Config file example:

[meta]
version=2.1

[database]
dsn=foobar

If you don’t specify a version number in the constructor versioning will
trigger automatically on the first file encountered which has a version number.
The reason this triggers is to prevent accidentally loading files further down
the chain which have an incompatible version.

Only “major” and “minor” numbers are supported. If the application encounters a
file with a different “major” value, it will emit a log message with severity
ERROR and the file will be skipped. If the minor version of a file is
smaller than the expected version, an error is logged as well and the file is
skipped. If the minor version is equal or larger (inside the config file), then
the file will be loaded.

In other words, for a file to be loaded, the major versions that the
application expected (via the get_config call) must match the major version
in the config-file and the expectes minor version must be smaller than
the minor version inside the config-file.

Requiring files (bail out if no config is found)

Since version 3.3.0, you have a bit more control about how files are loaded.
The get_config() function takes the
lookup_options value require_load. If this is set to True, an
OSError [https://docs.python.org/3.2/library/exceptions.html#OSError] is raised if no config file was loaded. Alternatively, and,
purely a matter of presonal preference, you can leave this on it’s default
False value and inspect the loaded_files attribute on the meta
attribute of the returned result. If it’s empty, nothing has been loaded.

Overriding internal defaults

Both the search path and the basename of the file (app.ini) can be
overridden by the application developer via the API and by the end-user via
environment variables.

By the application developer

Apart from the “group name” and “application name”, the
get_config() function accepts search_path
and filename as values in lookup_options. search_path controls to
what folders are searched for config files, filename controls the basename
of the config file. filename is especially useful if you want to separate
different concepts into different files:

app_cfg = get_config('acmecorp', 'bird_feeder').config
db_cfg = get_config('acmecorp', 'bird_feeder', {'filename': 'db.ini'})

By the end-user

The end-user has access to two environment variables:

	<GROUP_NAME>_<APP_NAME>_PATH overrides the default search path.

	XDG_CONFIG_HOME overrides the path considered as “home” locations for
config files (default = ~/.config)

	XDG_CONFIG_DIRS overrides additional path elements as recommended by
the freedesktop.org XDG basedir spec [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]. Paths are separated by : and are
sorted with descending precedence (leftmost is the most important one).

	<GROUP_NAME>_<APP_NAME>_FILENAME overrides the default basename of the
config file (default = app.ini).

Logging

All operations are logged using the default logging [https://docs.python.org/3.2/library/logging.html#module-logging] package with a
logger with the name config_resolver. All operational logs (opening/reading
file) are logged with the INFO level. The log messages include the absolute
names of the loaded files. If a file is not loadable, a WARNING message is
emitted. It also contains a couple of DEBUG messages. If you want to see
those messages on-screen you could do the following:

import logging
from config_resolver import Config
logging.basicConfig(level=logging.DEBUG)
conf = get_config('mycompany', 'myapplication').config

If you want to use the INFO level in your application, but silence only the
config_resolver logs, add the following to your code:

logging.getLogger('config_resolver').setLevel(logging.WARNING)

As of version 4.2.0, all log messages are prefixed with the group and
application name. This helps identifying log messages if multiple packages in
your application use config_resolver. The prefix filter can be accessed via
the “meta” member prefix_filter if you want to change or remove it:

from config_resolver import Config
conf = get_config('mycompany', 'myapplication')
print(conf.meta.prefix_filter)

More detailed information about logging is out of the scope of this document.
Consider reading the logging tutorial [http://docs.python.org/3.2/howto/logging.html#logging-basic-tutorial] of the official Python docs.

Environment Variables

The resolver can also be manipulated using environment variables to allow
different values for different running instances. The variable names are all
upper-case and are prefixed with both group- and application-name.

	<group_name>_<app_name>_PATH

	The search path for config files. You can specify multiple paths by
separating it by the system’s path separator default (: on Linux).

If the path is prefixed with +, then the path elements are appended
to the default search path.

	<group_name>_<app_name>_FILENAME

	The file name of the config file. Note that this should not be given with
leading path elements. It should simply be a file basename (f.ex.:
my_config.ini)

	XDG_CONFIG_HOME and XDG_CONFIG_DIRS

	See the XDG specification [http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html]

Debugging

Calling get_config() will not raise an error
(except if explicitly asked to do so). Instead it will always return a valid,
(but possibly empty) instance. So errors can be hard to see sometimes.

The idea behind this, is to encourage you to have sensible default values, so
that the application can run, even without configuration.

Your first stop should be to configure logging and look at the emitted
messages.

In order to determine whether any config file was loaded, you can look into the
loaded_files “meta” variable. It contains a list of all the loaded files,
in the order of loading. If that list is empty, no config has been found. Also
remember that the order is important. Later elements will override values from
earlier elements (depending of the used handler).

Additionally, another “meta” variable named active_path represents the
search path after processing of environment variables and runtime parameters.
This may also be useful to display information to the end-user.

Examples

A simple config instance (with logging):

import logging
from config_resolver import get_config

logging.basicConfig(level=logging.DEBUG)
cfg = get_config("bird_feeder", "acmecorp").config
print(cfg.get('section', 'var'))

An instance which will not load unsecured files:

import logging
from config_resolver import get_config

logging.basicConfig(level=logging.DEBUG)
cfg = get_config("bird_feeder", "acmecorp", {"secure": True}).config
print(cfg.get('section', 'var'))

Loading a versioned config file:

import logging
from config_resolver import get_config

logging.basicConfig(level=logging.DEBUG)
cfg = get_config("bird_feeder", "acmecorp", {"version": "1.0"}).config
print(cfg.get('section', 'var'))

Inspect the “meta” variables:

from config_resolver import get_config

cfg = get_config("bird_feeder", "acmecorp")
print(cfg.meta)

Changelog

Release 5.0.1-5.0.2

Support

	Slightly less aggressive logging (as of 5.0.1 by Vince Broz)

	Even less aggressive logging (as of 5.0.2 by Michel Albert)

	Compatibility with Python 3.5.2

	Improved unit-test on fresh clone (skip test with incorrect file-permissions
as they are not stored in git)

Release 5.0.0

Warning

Major API changes! Read the full documentation before upgrading!

	Python 2 support is now dropped!

	Add the possibility to supply a custom file “handler” (f.ex. YAML or other
custom parsers).

	Add config_resolver.handler.json as optional file-handler.

	Refactored from a simple module to a full-fledged Python package

	Retrieving a config instance no longer returns a subclass of the
configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser] class. Instead, it will return whatever
the supplied handler creates.

	External API changed to a functional API. You no longer call the Config
constructor, but instead use the get_config()
function. See the API docs for the changes in function signature.

	Retrieval meta-data is returned along-side the retrieved config. This
separation allows a custom handler to return any type without impacting the
internal logic of config_resolver.

	Dropped the deprectaed lookup in ~/.group-name/app-name in favor of the
XDG standard ~/.config/group-name/app-name.

	Fully type-hinted

Upgrading from 4.x

	Replace Config with get_config

	The result from the call to get_config now returns a named-tuple with two
objects: The config instance (.config) and additional metadata
(.meta).

	The following attributes moved to the meta-data object:

	active_path

	prefix_filter

	loaded_files

	Return types for INI files is now a standard library instance of
configparser.ConfigParser [https://docs.python.org/3.2/library/configparser.html#configparser.ConfigParser]. This means that the default
keyword argument to get has been replaced with fallback.

Release 4.3.8

Fixed

	Fixed a regression introduced in 4.3.7 which caused log-files no longer to be
loaded if meta.version had a mismatching minor-version

Note

While it may make sense to refuse loading config-version 1.2 when the app
asks for 1.4 (larger minor-version, same major-version), this would
introduce a backwards incompatibility and will break some apps using this.

This fix reverts that change from 4.3.7 but keeps the change on the test
deciding whether to log a warning or not, Before 4.3.7 we always emitted a
warning whenever the minor-version was different. Now we only emit one
when the minor version is too low in the loaded config-file.

Release 4.3.7

Fixed

	Fix changelog in generated docs

	Don’t log a warning when loading a config-file with a compatible (but
different) version.

Release 4.3.6

Fixed

	If a config-file contains any parser errors, that file is skipped while
logging a “critical” error. This prevents crashes caused by broken configs.

Release 4.3.5

Fixed

	The deprecation warning about the filename argument stated the exact
opposite to what it should have said :(This is fixed now

Release 4.3.4

Fixed

	Don’t emit deprecation warnings when the code is called as expected.

Release 4.3.3

Fixed

	Fixed a regression introduced by 4.3.2

Release 4.3.2

Fixed

	Replace hand-crafted code with stack_level information for deprecation
warnings

Release 4.3.1.post1

Fixed

	Fixed type hints

	Arguments require_load and version are no longer ignored in
get_config

Release 4.3.1

Fixed

	Fixed return-value of get_config. It now properly returns the same return
value as config-resolver 5. New deprecation warnings have been added as well.

Warning

This will BREAK your code as get_config now returns a tuple, with
the config instance being the first element! This should never have entered
like this in the 4.x branch. Sorry about that.

	Fixed missing NoSectionError and NoOptionError imports (regression
from 4.2.5 via commit 54168cd)

Release 4.3.0

Added

	The new “transition” function get_config now also honors the
secure flag in lookup_options.

Release 4.2.5.post2

Fixes

	filename can now be passed as direct argument to get_config

	Don’t warn if the config is retrieved correctly

Release 4.2.5.post1

Fixes

	Improved warning detail in deprecation messages.

Release 4.2.5

Fixes

	Change from a module-only distrbution to a package (for PEP-561)

	Make package PEP-561 compliant

	Add transition function config_resolver.get_config for a smoother upgrade
to v5.0 in the future.

	Add deprecation warnings with details on how to change the code for a smooth
transition to v5.0

Release 4.2.4

Fixes

	Improve code quality.

	Improve log message for invalid config version numbers.

Release 4.2.3

Fixes

	Unit tests fixed

	Added missing LICENSE file

	Log messages will now show the complete version string

	Auto-detect version number if none is specifiec in the [meta] section.

	Fix travis CI pipeline

Release 4.2.2

Fixes

	Python 2/3 class-inheritance fixed.

Release 4.2.1

Fixes

	Log message prefixes no longer added multiple times

Release 4.2.0

Features added

	GROUP and APP names are now included in the log messages.

Release 4.1.0

Features added

	XDG Basedir support

config_resolver will now search in the folders/names defined in the XDG
specification.

Release 4.0.0

Features added

	Config versioning support.

The config files can now have a section meta with the key version.
The version is specified in dotted-notation with a major and minor number
(f.ex.: version=2.1). Configuration instances take an optional
version argument as well. If specified, config_resolver expects the
meta.version to be there. It will raise a
config_resolver.NoVersionError otherwise. Increments in the major number
signify an incompatible change. If the application expectes a different major
number than stored in the config file, it will raise a
config_resolver.IncompatibleVersion exception. Differences in minor
numbers are only logged.

Improvments

	The mandatory argument has been dropped! It is now implicitly assumed
it the .get method does not specify a default value. Even though
“explicit is better than implicit”, this better reflects the behaviour of the
core ConfigParser and is more intuitive.

	Legacy support of old environment variable names has been dropped!

	Python 3 support.

	When searching for a file on the current working directory, look for
./.group/app/app.ini instead of simply ./app.ini. This solves a
conflict when two modules use config_resolver in the same application.

	Better logging.

Release 3.3.0

Features added

	New (optional) argument: require_load. If set to True creating a
config instance will raise an error if no appropriate config file is found.

	New class: SecuredConfig: This class will refuse to load config files
which are readable by other users than the owner.

Improvments

	Documentation updated/extended.

	Code cleanup.

Release 3.2.2

Improvments

	Unit tests added

Release 3.2.1

Fixes/Improvments

	The “group” name has been prefixed to the names of the environment variables.
So, instead of APP_PATH, you can now use GROUP_APP_PATH instead. Not using
the GROUP prefix will still work but emit a DeprecationWarning.

Release 3.2

Features added

	The call to get can now take an optional default value. More details can
be found in the docstring.

Release 3.1

Features added

	It is now possible to extend the search path by prefixing the
<APP_NAME>_PATH variable value with a +

	Changelog added

Custom Handlers

When requesting a config-instance using
get_config() it is possible to specify a custom
file-handler using the handler keyword arg. For example:

from config_resolver import get_config
from config_resolver.handlers.json import JsonHandler

result = get_config('foo', 'bar', handler=JsonHandler)

Each handler has full control over the data type which is returned by
get_config(). get_config always returns a
named-tuple with two arguments:

	config: This contains the object returned by the handler.

	meta: This is a named-tuple which is generated by config_resolver and not
modifyable by a handler. See The Meta Object.

A handler must be subclassed from
config_resolver.handler.base.Handler which allows us to provide
good type-hinting.

See the existing handlers in config_resolver.handler for some
practical examples.

The Meta Object

The return value of get_config() returns a
named-tuple which not only contains the parsed config instance, but also some
additional meta-data.

Before version 5.0 this information was melded into the returned config instance.

The reason this was split this way in version 5.0, is because with this
version, the return type is defined by the handlers.
Now, handlers may have return-types which cannot easily get additional values
grafted onto them (at least not explicitly). To keep it clear and
understandable, the values are now explicitly returned separately! This give
the handler total freedom of which data-type they work with, and still retain
useful meta-data for the end-user.

The meta-object is accessible via the second return value from
get_config():

_, meta = get_config('foo', 'bar')

Or via the meta attribute on the returned named-tuple:

result = get_config('foo', 'bar')
meta = result.meta

At the time of this writing, the meta-object contains the following attributes:

	active_path

	A list of path names were used to look for files (in order of the lookup)

	loaded_files

	A list of filenames which have been loaded (in order of loading)

	config_id

	The internal ID used to identify the application for which the config was
requested. This corresponds to the first and second argument to
get_config.

	prefix_filter

	A reference to the logging-filter which was added to prefix log-lines with
the config ID. This exists so a user can easily get a handle on this in
case it needs to be removed from the filters.

config_resolver

	config_resolver package
	Subpackages
	config_resolver.handler package
	Submodules

	config_resolver.handler.base module

	config_resolver.handler.ini module

	config_resolver.handler.json module

	Module contents

	Submodules

	config_resolver.core module

	config_resolver.exc module

	config_resolver.util module

	Module contents

config_resolver package

Subpackages

	config_resolver.handler package
	Submodules

	config_resolver.handler.base module

	config_resolver.handler.ini module

	config_resolver.handler.json module

	Module contents

Submodules

config_resolver.core module

Core functionality of config_resolver

	
class config_resolver.core.ConfigID(group, app)

	Bases: tuple

	
app

	Alias for field number 1

	
group

	Alias for field number 0

	
class config_resolver.core.FileReadability(is_readable, filename, reason, version)

	Bases: tuple

	
filename

	Alias for field number 1

	
is_readable

	Alias for field number 0

	
reason

	Alias for field number 2

	
version

	Alias for field number 3

	
class config_resolver.core.LookupMetadata(active_path, loaded_files, config_id, prefix_filter)

	Bases: tuple

	
active_path

	Alias for field number 0

	
config_id

	Alias for field number 2

	
loaded_files

	Alias for field number 1

	
prefix_filter

	Alias for field number 3

	
class config_resolver.core.LookupResult(config, meta)

	Bases: tuple

	
config

	Alias for field number 0

	
meta

	Alias for field number 1

	
config_resolver.core.effective_filename(config_id: config_resolver.core.ConfigID, config_filename: str) → str

	Returns the filename which is effectively used by the application. If
overridden by an environment variable, it will return that filename.

config_id is used to determine the name of the variable. If that does not
return a value, config_filename will be returned instead.

	
config_resolver.core.effective_path(config_id: config_resolver.core.ConfigID, search_path: str = '') → List[str]

	Returns a list of paths to search for config files in order of
increasing precedence: the last item in the list will override values of
earlier items.

The value in config_id determines the sub-folder structure.

If search_path is specified, that value should have the OS specific
path-separator (: or ;) and will completely override the default
search order. If it is left empty, the search order is dictated by the
XDG standard.

As a “last-resort” override, the value of the environment variable
<GROUP_NAME>_<APP_NAME>_PATH will be inspected. If this value is set, it
will be used instead of anything found previously (XDG paths,
search_path value) unless the value is prefixed with a + sign. In
that case it will be appended to the end of the list.

Examples:

>>> # Search the default XDG paths (and the CWD)
>>> effective_path(config_id)

>>> # Search only in "/etc/myapp"
>>> effective_path(config_id, search_path="/etc/myapp")

>>> # Search only in "/etc/myapp" and "/etc/fallback"
>>> effective_path(config_id, search_path="/etc/myapp:/etc/fallback")

>>> # Add "/etc/myapp" to the paths defined by XDG
>>> assert os.environ["FOO_BAR_PATH"] == "+/etc/myapp"
>>> effective_path(ConfigId("foo", "bar"))

	
config_resolver.core.env_name(config_id: config_resolver.core.ConfigID) → str

	Return the name of the environment variable which contains the file-name to
load.

	
config_resolver.core.find_files(config_id: config_resolver.core.ConfigID, search_path: Optional[List[str]] = None, filename: str = '') → Generator[str, None, None]

	Looks for files in default locations. Returns an iterator of filenames.

	Parameters

	
	config_id – A “ConfigID” object used to identify the config folder.

	search_path – A list of paths to search for files.

	filename – The name of the file we search for.

	
config_resolver.core.from_string(data: str, handler: Optional[config_resolver.handler.base.Handler[typing.Any][Any]] = None) → config_resolver.core.LookupResult

	Load a config from the string value in data. handler can be used to
specify a custom parser/handler.

	
config_resolver.core.get_config(app_name: str, group_name: str = '', lookup_options: Optional[Dict[str, Any]] = None, handler: Optional[Type[config_resolver.handler.base.Handler[typing.Any][Any]]] = None) → config_resolver.core.LookupResult

	Factory function to retrieve new config instances.

app_name is the only required argument for config lookups. If nothing else
is specified, this will trigger a lookup in default XDG locations for a
config file in a subfolder with that name.

group_name is an optional subfolder which is prefixed to the subfolder
based on the app_name. This can be used to group related configurations
together.

To summarise the two above paragraphs the relative path (relative to the
search locations) will be:

	<app_name>/<filename> if only app_name is given

	<group_name>/<app_name>/<filename> if both app_name and
group_name are given

lookup_options contains arguments which allow more fine-grained control
of the lookup process. See below for details.

The handler may be a class which is responsible for loading the config
file. config_resolver uses a “.ini” file handler by default and comes
bundled with a JSON handler as well. They can be found in the
:py:module:`config_resolver.handler` package.

Note

The type of the returned config-object depends on the handler. Each
handler has its own config type!

For example, loading JSON files can be achieved using:

>>> from config_resolver.handler.json import JsonHandler
>>> get_config("myapp", handler=JsonHandler)

lookup_options is a dictionary with the following optional keys:

	filename (default=``’‘``)

	This can be used to override the default filename of the selected
handler. If left empty, the handler will be responsible for the
filename.

	search_path (default=``[]``)

	A list of folders that should be searched for config files. The order
here is relevant. The folders will be searched in order, and each file
which is found will be loaded by the handler. Note that the search
path should not include group_name or app_name as they will be
appended automatically.

	require_load (default=``False``)

	A boolean value which determines what happens if no file was loaded.
If this is set to True the call to get_config will raise an
exception if no file was found. Otherwise it will log a debug message.

	version (default=``None``)

	This can be a string in the form <major>.<minor>. If specified, the
lookup process will request a version number from the handler for each
file found. The version in the file will be compared with this value. If
the minor-number differs, the file will be loaded, but a warning will be
logged. If the major number differs, the file will be skipped and an
error will be logged. If the value is left unset, no version checking
will be performed. If this is left unspecified and a config file is
encountered with a version number, a sanity check is performed on
subsequent config-files to ensure that no mismatching major versions
are loaded in the lookup-chain.

How the version has to be stored in the config file depends on the
handler.

	secure (default=``False``)

	If set to True, files which are world-readable will be ignored.
This forces you to have secure file-access rights because the file will
be skipped if the rights are too open.

	
config_resolver.core.get_xdg_dirs(config_id: config_resolver.core.ConfigID) → List[str]

	Returns a list of paths specified by the XDG_CONFIG_DIRS environment
variable or the appropriate default. See The Freedesktop XDG standard for details.

The list is sorted by precedence, with the most important item coming
last (required by the existing config_resolver logic).

The value in config_id is used to determine the sub-folder structure.

	
config_resolver.core.get_xdg_home(config_id: config_resolver.core.ConfigID) → str

	Returns the value specified in the XDG_CONFIG_HOME environment variable
or the appropriate default. See The Freedesktop XDG standard for details.

	
config_resolver.core.is_readable(config_id: config_resolver.core.ConfigID, filename: str, version: Optional[packaging.version.Version] = None, secure: bool = False, handler: Optional[Type[config_resolver.handler.base.Handler[typing.Any][Any]]] = None) → config_resolver.core.FileReadability

	Check if filename can be read. Will return boolean which is True if
the file can be read, False otherwise.

	Parameters

	
	filename – The exact filename which should be checked.

	version – The expected version, that should be found in the file.

	secure – Whether we should avoid loading insecure files or not.

	handler – The handler to be used to open and parse the file.

	
config_resolver.core.prefixed_logger

	Returns a log instance and prefix filter for a given group- & app-name pair.

It applies a filter to the logger which prefixes the log messages with
group- and application-name from the config.

The call to this function is cached to ensure we only have one instance in
memory.

config_resolver.exc module

Exceptions for the config_resolver package

	
exception config_resolver.exc.NoVersionError

	Bases: Exception [https://docs.python.org/3.2/library/exceptions.html#Exception]

This exception is raised if the application expects a version number to be
present in the config file but does not find one.

config_resolver.util module

Helpers and utilities for the config_resolver package.

This module contains stuff which is not directly impacting the business logic of
the config_resolver package.

	
class config_resolver.util.PrefixFilter(prefix: str, separator: str = ' ')

	Bases: logging.Filter [https://docs.python.org/3.2/library/logging.html#logging.Filter]

A logging filter which prefixes each message with a given text.

	Parameters

	
	prefix – The log prefix.

	separator – A string to put between the prefix and the original log
message.

	
filter(record: logging.LogRecord) → bool

	Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for
yes. If deemed appropriate, the record may be modified in-place.

Module contents

The config_resolver package provides an easy way to create an instance of
a config object.

The main interface of this package is
config_resolver.core.get_config() (also provided via
config_resolver.get_config).

This function takes a fair amount of options to control how config files are
loaded. The easiest example is:

>>> from config_resolver import get_config
>>> config, metadata = get_config("myapp")

This call will scan through a number of folders and load/update the config
with every matching file in that chain. Some customisation of that load
process is made available via the get_config()
arguments.

The call retuns a config instance, and some meta-data related to the loading
process. See get_config() for details.

config_resolver comes with support for .json and .ini files out
of the box. It is possible to create your own handlers for other file types
by subclassing config_resolver.handler.Handler and passing it to
get_config()

config_resolver.handler package

Submodules

config_resolver.handler.base module

This module contains helpers for type hinting

	
class config_resolver.handler.base.Handler

	Bases: typing.Generic

A generic config file handler. Concrete classes should be created in order
to support new file formats.

	
DEFAULT_FILENAME = 'unknown'

	The filename that is used when the user did not specify a filename when
retrieving the config instance

	
static empty() → TConfig

	Create an empty configuration instance.

	
static from_filename(filename: str) → TConfig

	Create a configuration instance from a file-name.

	
static from_string(data: str) → TConfig

	Create a configuration instance from a text-string

	
static get_version(config: TConfig) → Optional[packaging.version.Version]

	Retrieve the parsed version number from a given config instance.

	
static update_from_file(config: TConfig, filename: str) → None

	Updates an existing config instance from a given filename.

The config instance in data will be modified in-place!

config_resolver.handler.ini module

Handler for INI files

	
class config_resolver.handler.ini.IniHandler

	Bases: config_resolver.handler.base.Handler

A config-resolver handler capable of reading “.ini” files.

	
DEFAULT_FILENAME = 'app.ini'

	

	
static empty() → configparser.ConfigParser

	Create an empty configuration instance.

	
static from_filename(filename: str) → configparser.ConfigParser

	Create a configuration instance from a file-name.

	
static from_string(data: str) → configparser.ConfigParser

	Create a configuration instance from a text-string

	
static get_version(config: configparser.ConfigParser) → Optional[packaging.version.Version]

	Retrieve the parsed version number from a given config instance.

	
static update_from_file(config: configparser.ConfigParser, filename: str) → None

	Updates an existing config instance from a given filename.

The config instance in data will be modified in-place!

config_resolver.handler.json module

Handler for JSON files

	
class config_resolver.handler.json.JsonHandler

	Bases: config_resolver.handler.base.Handler

A config-resolver handler capable of reading “.json” files.

	
DEFAULT_FILENAME = 'app.json'

	

	
static empty() → Dict[str, Any]

	Create an empty configuration instance.

	
static from_filename(filename: str) → Dict[str, Any]

	Create a configuration instance from a file-name.

	
static from_string(data: str) → Dict[str, Any]

	Create a configuration instance from a text-string

	
static get_version(config: Dict[str, Any]) → Optional[packaging.version.Version]

	Retrieve the parsed version number from a given config instance.

	
static update_from_file(config: Dict[str, Any], filename: str) → None

	Updates an existing config instance from a given filename.

The config instance in data will be modified in-place!

Module contents

Container package for “handlers”. See Custom Handlers.

Glossary

	file-handler

	A file-handler is a module or class offering a minimal set of functions
to load files as config files. They can optionally be supplied to
get_config(). By default, handlers for
INI and JSON files are supplied. Look at Custom Handlers for
details on how to create a new one.

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 config_resolver	

 	
 	
 config_resolver.core	

 	
 	
 config_resolver.exc	

 	
 	
 config_resolver.handler	

 	
 	
 config_resolver.handler.base	

 	
 	
 config_resolver.handler.ini	

 	
 	
 config_resolver.handler.json	

 	
 	
 config_resolver.util	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | P
 | R
 | U
 | V

A

 	
 	active_path (config_resolver.core.LookupMetadata attribute)

 	
 	app (config_resolver.core.ConfigID attribute)

C

 	
 	config (config_resolver.core.LookupResult attribute)

 	config_id (config_resolver.core.LookupMetadata attribute)

 	config_resolver (module)

 	config_resolver.core (module)

 	config_resolver.exc (module)

 	
 	config_resolver.handler (module)

 	config_resolver.handler.base (module)

 	config_resolver.handler.ini (module)

 	config_resolver.handler.json (module)

 	config_resolver.util (module)

 	ConfigID (class in config_resolver.core)

D

 	
 	DEFAULT_FILENAME (config_resolver.handler.base.Handler attribute)

 	(config_resolver.handler.ini.IniHandler attribute)

 	(config_resolver.handler.json.JsonHandler attribute)

E

 	
 	effective_filename() (in module config_resolver.core)

 	effective_path() (in module config_resolver.core)

 	empty() (config_resolver.handler.base.Handler static method)

 	(config_resolver.handler.ini.IniHandler static method)

 	(config_resolver.handler.json.JsonHandler static method)

 	
 	env_name() (in module config_resolver.core)

F

 	
 	file-handler

 	filename (config_resolver.core.FileReadability attribute)

 	FileReadability (class in config_resolver.core)

 	filter() (config_resolver.util.PrefixFilter method)

 	find_files() (in module config_resolver.core)

 	from_filename() (config_resolver.handler.base.Handler static method)

 	(config_resolver.handler.ini.IniHandler static method)

 	(config_resolver.handler.json.JsonHandler static method)

 	
 	from_string() (config_resolver.handler.base.Handler static method)

 	(config_resolver.handler.ini.IniHandler static method)

 	(config_resolver.handler.json.JsonHandler static method)

 	(in module config_resolver.core)

G

 	
 	get_config() (in module config_resolver.core)

 	get_version() (config_resolver.handler.base.Handler static method)

 	(config_resolver.handler.ini.IniHandler static method)

 	(config_resolver.handler.json.JsonHandler static method)

 	
 	get_xdg_dirs() (in module config_resolver.core)

 	get_xdg_home() (in module config_resolver.core)

 	group (config_resolver.core.ConfigID attribute)

H

 	
 	Handler (class in config_resolver.handler.base)

I

 	
 	IniHandler (class in config_resolver.handler.ini)

 	
 	is_readable (config_resolver.core.FileReadability attribute)

 	is_readable() (in module config_resolver.core)

J

 	
 	JsonHandler (class in config_resolver.handler.json)

L

 	
 	loaded_files (config_resolver.core.LookupMetadata attribute)

 	
 	LookupMetadata (class in config_resolver.core)

 	LookupResult (class in config_resolver.core)

M

 	
 	meta (config_resolver.core.LookupResult attribute)

N

 	
 	NoVersionError

P

 	
 	prefix_filter (config_resolver.core.LookupMetadata attribute)

 	
 	prefixed_logger (in module config_resolver.core)

 	PrefixFilter (class in config_resolver.util)

R

 	
 	reason (config_resolver.core.FileReadability attribute)

U

 	
 	update_from_file() (config_resolver.handler.base.Handler static method)

 	(config_resolver.handler.ini.IniHandler static method)

 	(config_resolver.handler.json.JsonHandler static method)

V

 	
 	version (config_resolver.core.FileReadability attribute)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 config_resolver

 		
 Usage

 		
 Basics

 		
 The Freedesktop XDG standard

 		
 Advanced Usage

 		
 Versioning

 		
 Requiring files (bail out if no config is found)

 		
 Overriding internal defaults

 		
 By the application developer

 		
 By the end-user

 		
 Logging

 		
 Environment Variables

 		
 Debugging

 		
 Changelog

 		
 Release 5.0.1-5.0.2

 		
 Support

 		
 Release 5.0.0

 		
 Upgrading from 4.x

 		
 Release 4.3.8

 		
 Fixed

 		
 Release 4.3.7

 		
 Fixed

 		
 Release 4.3.6

 		
 Fixed

 		
 Release 4.3.5

 		
 Fixed

 		
 Release 4.3.4

 		
 Fixed

 		
 Release 4.3.3

 		
 Fixed

 		
 Release 4.3.2

 		
 Fixed

 		
 Release 4.3.1.post1

 		
 Fixed

 		
 Release 4.3.1

 		
 Fixed

 		
 Release 4.3.0

 		
 Added

 		
 Release 4.2.5.post2

 		
 Fixes

 		
 Release 4.2.5.post1

 		
 Fixes

 		
 Release 4.2.5

 		
 Fixes

 		
 Release 4.2.4

 		
 Fixes

 		
 Release 4.2.3

 		
 Fixes

 		
 Release 4.2.2

 		
 Fixes

 		
 Release 4.2.1

 		
 Fixes

 		
 Release 4.2.0

 		
 Features added

 		
 Release 4.1.0

 		
 Features added

 		
 Release 4.0.0

 		
 Features added

 		
 Improvments

 		
 Release 3.3.0

 		
 Features added

 		
 Improvments

 		
 Release 3.2.2

 		
 Improvments

 		
 Release 3.2.1

 		
 Fixes/Improvments

 		
 Release 3.2

 		
 Features added

 		
 Release 3.1

 		
 Features added

 		
 Custom Handlers

 		
 The Meta Object

 		
 API docs

 		
 config_resolver package

 		
 Subpackages

 		
 Submodules

 		
 config_resolver.core module

 		
 config_resolver.exc module

 		
 config_resolver.util module

 		
 Module contents

 		
 Glossary

_static/up-pressed.png

_static/up.png

